EXTENSION ACTIVITY INTRODUCTION TO COLLEGE CHEMISTRY

IONIC BONDING

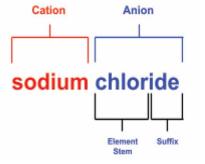
Activity Directions

This activity will serve as practice for the topics covered in the lonic Bonding game. This activity is best used in conjunction with not only the tutorial levels, but also supplementary learning resources such as course lectures, textbook reading, etc. Questions labeled "Lock It In" are simply opportunities for you to solidify what you have accomplished in each task and help ensure you meet each objective.

1. Log into Collisions and navigate to the lonic Bonding Game.

9

- 2. Play the Tutorial levels, if you haven't done so already.
- 3. Exit the levels and enter the lonic Bonding sandbox.
- 4. Follow all instructions as written below. Be sure to reference your course's textbook, lecture notes, etc. as needed.


© 2021 PlayMada Games LLC. All Rights Reserved.

playmada^{**}

Demonstrate an understanding of ionic compound nomenclature and ionic ratios for main group elements.

lonic bonds form as a result of electrostatic attraction between cations and anions. As a result, ionic compounds are given two-part names that acknowledge both the cation and anion. The name of the cation appears first, while the anion name appears second. Metals (cations) will simply keep their element name. However, with nonmetals (the anions) the suffix -ide is added to the element stem name. Take the compound NaCl as an example:

TASK 1: Complete the table below by creating each compound in the sandbox and by using the information provided in the text above.

Compound Name	Chemical Formula	Charge of Each Cation	Number of Individual Cations in Formula Unit	Charge of Each Anion	Number of Individual Anions in Formula Unit	Cation-Anion Ratio
potassium bromide						
	MgCl ₂					
aluminum oxide						
	Li ₃ N					
calcium sulfide						

LOCK IT IN: Does the nomenclature used here for main group ionic compounds reflect the number of individual ions in the formula unit? Explain.

IONIC BONDING - EXTENSION ACTIVITY

playmada^{**}

Demonstrate an understanding of ionic compound nomenclature and ionic ratios for main group elements.

Ionic compound nomenclature with polyatomic ions is straightforward except that the names of the polyatomic ions must be memorized or obtained from a reference source. Once again, the cation will appear first in the name, while the anion will appear second without name modification (e.g. ammonium chlorate - NH_4CIO_3). Below is a table of the polyatomic ions available in the Ionic Bonding Sandbox. Use them to complete Task 2.

Ion Name	Chemical Formula
nitrate	NO ₃ -
hydroxide	OH ⁻
ammonium	NH_4^+
phosphate	PO43-
sulfate	SO4 ²⁻
carbonate	CO32-

TASK 2: Complete the table below by creating each compound in the sandbox and by using the information provided in the text above.

Compound Name	Chemical Formula	Charge of Each Cation	Number of Individual Cations in Formula Unit	Charge of Each Anion	Number of Individual Anions in Formula Unit	Cation-Anion Ratio
	$Al_2(SO_4)_3$					
sodium nitrate						
ammonium carbonate						
	Ca(OH) ₂					
	Mg(NO ₃) ₂					

LOCK IT IN:

Does the nomenclature used here for compounds containing polyatomic ions reflect the number of individual ions in the formula unit? Explain.

IONIC BONDING - EXTENSION ACTIVITY

playmada

Demonstrate an understanding of ionic compound nomenclature and ionic ratios for main group elements.

Ionic compound nomenclature becomes more involved when considering the transition metals. Take a look at the iron (Fe) and copper (Cu) ions in the sandbox. You will notice that there are two possible charges for iron ions and two possible charges for copper ions. The existence of multiple ion charges is a very common characteristic of transition metals. As such, special nomenclature rules exist to keep track of them. The Stock system now provides what is considered the preferred and formal name for the transition metal ions. In this system, the metal is named and followed by the roman numeral for the charge of the ion in parentheses (e.g. the Fe²⁺ ion is iron (II) in the Stock system)

Element	lon	lon Stock System Name
	Fe ²⁺	iron (II)
Iron	Fe ³⁺	Iron (III)
0	Cu⁺	copper (I)
Copper	Cu ²⁺	copper (II)
	Sn ²⁺	tin (II)
Tin	Sn⁴⁺	tin (IV)
	Pb ²⁺	lead (II)
Lead	Pb ⁴⁺	lead (IV)
Oshall	Co ²⁺	cobalt (II)
Cobalt	Co ³⁺	cobalt (III)
	Cr ²⁺	chromium (II)
Chromium	Cr ³⁺	chromium (III)

IONIC BONDING - EXTENSION ACTIVITY

Demonstrate an understanding of ionic compound nomenclature and ionic ratios for main group elements.

TASK 3: Complete the table below by creating each compound in the sandbox and by using the information provided in the text above.

Compound Name (Stock system name)	Chemical Formula	Charge of Each Cation	Number of Individual Cations in Formula Unit	Charge of Each Anion	Number of Individual Anions in Formula Unit	Cation-Anion Ratio
iron (II) sulfate						
	CuCl ₂					
	Cu ₂ SO ₄					
copper (II) phosphate						
	Fe(NO ₃) ₃					

IONIC BONDING - EXTENSION ACTIVITY

playmada^{**}

Demonstrate an understanding of how ionic bonding is an energetically favorable process.

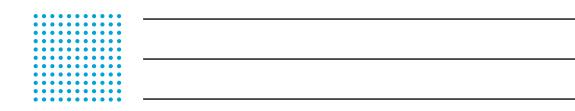
It is important to remember that ionic bonding is the result of two key processes: the transfer of an electron(s) from one atom to another and the resulting electrostatic attraction between the now oppositely charged particles. As such, two key concepts immediately become important—**ionization energy** and **electron affinity**. Ionization energy describes the amount of energy required to remove an electron from an atom in the gaseous state. Electron affinity describes the amount of energy either required or released to add an electron to an atom in the gaseous state. Considering this, one would assume that the formation of ionic bonds occurs when the ionization energy of one atom is less than the amount of energy released when the atom with which it bonds accepts an electron. Let's see if this is true.

TASK 4: Complete the fifth column of the table by determining the sum of ionization energies and electron affinities of the elements in each reaction by adding the two together. Signs are important here! **The last column will remain empty until Task 5.** Also, remember that in some cases the number of electrons exchanged is more than one, so you will sometimes have to also consider second ionization energies and electron affinities.

Compound	Synthesis Reaction	Metal lonization Energy (kJ/mol)	Nonmetal Electron Affinity (kJ/mol)	IE + EA (kJ/mol)	Endothermic or Exothermic?
lithium bromide (LiBr)	$Li(s) + \frac{1}{2} Br_2(g) \rightarrow LiBr(s)$	+ 520	— 325		
potassium fluoride (KCl)	$K(s) + \frac{1}{2} F_2(g) \to KF(s)$	+ 419	— 328		
calcium oxide (CaO)	$Ca(s) + \frac{1}{2}O_2(g) \rightarrow CaO(s)$	First: + 590 Second: + 1145	First: —142 Second: + 844		
magnesium chloride (MgCl ₂)	$Mg(s) + Cl_2(g) \to MgCl_2(s)$	First: + 738 Second: + 1451	— 349		

IONIC BONDING - EXTENSION ACTIVITY

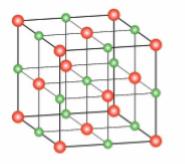
playmada^{...}

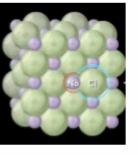

Demonstrate an understanding of how ionic bonding is an energetically favorable process.

TASK 5: In the case that a reaction releases energy, it is considered **exothermic**. If the reactions you saw in Task 4 were exothermic, then the sum of their ionization energies and electron affinities would be negative, indicating that energy is released by the reaction. In the case that a reaction requires an input of energy, it is considered **endothermic**. If the reactions you saw in Task 4 were endothermic, then the sum of their ionization energies and electron affinities would be positive, indicating that energy input is required to complete the reaction. Use this information to complete the last column of the table in Task 4 and determine which type of reaction is predicted by ionization energies and electron affinities alone.

LOCK IT IN:

It turns out that the formation of ionic compounds in general, including the ones in Task 4, are very **exothermic** reactions. Considering this information, do the concepts of ionization energy and electron affinity alone explain the formation of ionic bonds? Explain your answer.


IONIC BONDING - EXTENSION ACTIVITY


playmada^{**}

TASK 6: Leave the sandbox and go to level 3 in the ionic bonding game. Click the menu button and choose "Restart level". Build the first compound from the table in Task 4 — lithium bromide. Drag the formula unit into the correct section of the bottom panel of the game screen. In the space below, describe what appears immediately **after** the game checks and confirms the compound you created.

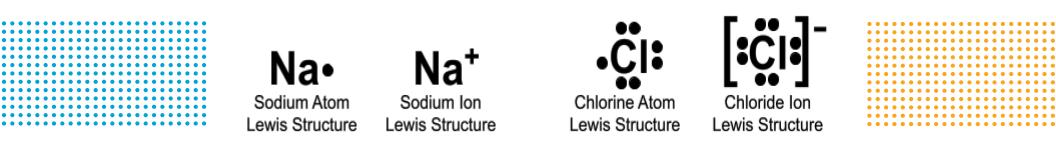
That structure that is shown is known as a **crystal lattice**. This arrangement of ions is crucial to understanding how a process that would be endothermic based on electron transfer alone is actually exothermic. As you saw with lithium bromide in the game, ions created as a result of electron transfer coalesce to form a network of alternating cations and anions. As these oppositely charged ions approach each other, their potential energy decreases and is released as heat. This released energy is known as the **lattice energy** and is so large that it outweighs the endothermicity of the electron transfer and makes the entire process of ionic bond formation exothermic.

Left: This generic crystal lattice shows alternating cations and anions. Formation of structures like this one releases energy.

Right: Sodium chloride (NaCl) crystal lattice as depicted in the lonic Bonding game.

Ion Lattice by Prolineserver, CC BY-SA 3.0

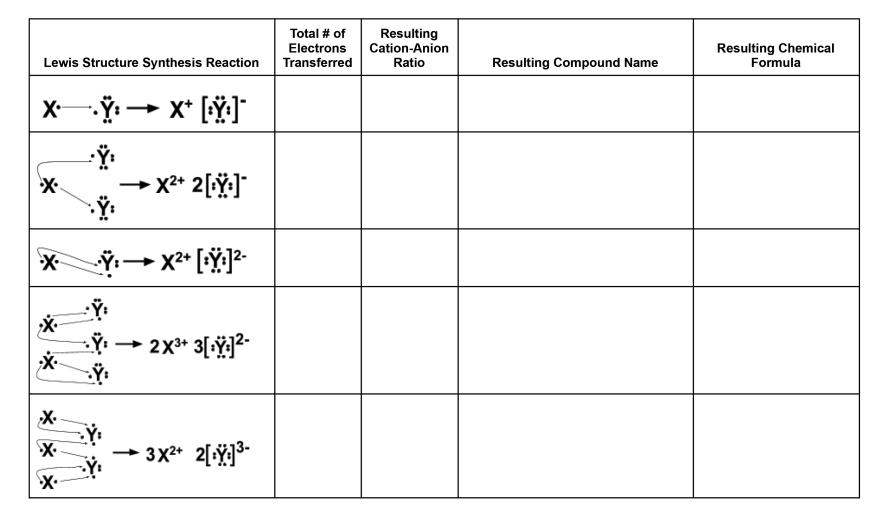
In your own words, use the terms endothermic and exothermic to explain why ionic bond formation releases energy.


IONIC BONDING - EXTENSION ACTIVITY

playmada^{**}

Demonstrate an understanding of how Lewis structures can represent the formation of ionic compounds.

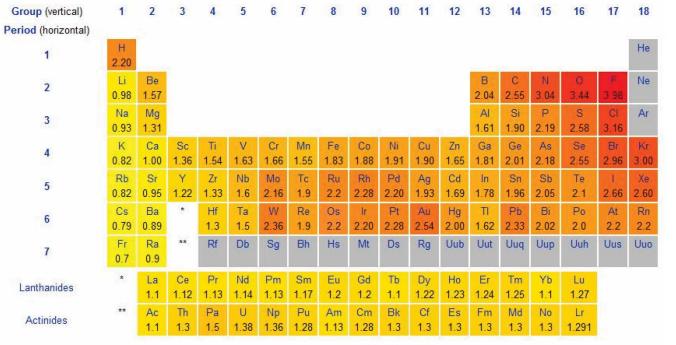
Lewis structures are a useful tool commonly used in chemistry to simply depict the valence electrons found around atoms and ions. As such, Lewis structures can also be used to show how atoms interact with one another in order to fulfill the **octet rule** that states that atoms generally prefer to have a full set of valence electrons. Such a state would be represented on a Lewis structure either by showing either 4 pairs of dots surrounding the atom or no dots surrounding the atom. Arrows can also be used to show how valence electrons move between atoms. Lewis structures are particularly useful for depicting the covalent bonds of molecules, but are also used for ionic compounds.


IONIC BONDING - EXTENSION ACTIVITY

playmada^{**}

Demonstrate an understanding of how Lewis structures can represent the formation of ionic compounds.

TASK 7: Use the sandbox to create a compound that matches the Lewis structures in the first column of the table. Record the details about that compound in the remaining columns of the table. Note: Multiple correct answers are possible for each reaction.



IONIC BONDING - EXTENSION ACTIVITY

playmada^{**}

Another key concept in chemical bonding is **electronegativity**. Electronegativity describes the tendency of an atom to attract shared electrons towards itself. The difference in electronegativity between two bonded elements can help reveal whether the bond is ionic or covalent (covalent bonds are covered in their own game). Metals tend to have very low electronegativities while nonmetals tend to have higher ones. Ionic bonds, which form between metals and nonmetals, are thus characterized by large differences in electronegativities between the bonding elements. The exact electronegativity difference that characterizes each bond type varies depending on source, demonstrating how bonds are never purely ionic. However, the values used here are broadly representative of the variation. Also note that there are exceptions to the general electronegativity difference patterns. Some compounds with relatively low electronegativity differences are classified as ionic, while others with relatively large differences are classified as covalent. As with many areas in chemistry, gray areas do exist.

Pauling Electronegativities of the Elements

Electronegativity Values, CC BY-SA 3.0

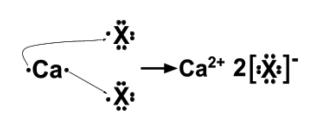
IONIC BONDING - EXTENSION ACTIVITY

playmada[™]

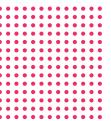
Electronegativity Difference	Bond Type
0 to 1.7	Covalent
> 1.7	lonic unless between two nonmetals

TASK 8: Use the electronegativity values and bond type table provided above to identify each substance in the table below as either ionically or covalently bonded. Make any ionically bonded substance in the sandbox to practice.

Chemical Formula of Substance	Electronegativity of First Element	Electronegativity of Second Element	Electronegativity Difference	Ionic or Covalent?
Cs ₂ S				
KF				
со				
NO				
MgO				



IONIC BONDING - EXTENSION ACTIVITY


playmada^{**}

CLOSURE: Below is a Lewis structure for a substance with an anion of unknown identity. Use the sandbox to identify two ion candidates for the missing anion "X". Once you have done this, write the name and chemical formula for each compound before calculating the electronegativity difference between the elements in the two compounds you identify.

Possible Identity of X (name and chemical formula)	Compound Name	Compound Chemical Formula	Electronegativity Difference

IONIC BONDING - EXTENSION ACTIVITY

playmada^{**}